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Abstract 

The general theory developed thus far (Sachs, 1971b, c, d) is applied to two-particle 
systems. An exact bound state solution of the nonlinear field equations of this theory for a 
particle-antiparticle pair is demonstrated. From the Lagrangian formalism, this solution 
is shown to predict all of the experimental facts that are conventionally interpreted in 
terms of 'pair  annihilation': (1) the energy-momentum four-vector (and each of the four 
components, separately) are zero, compared with the energy, 2me 2, of the state when the 
particle and antiparticle are (asymptotically) free and (2) the dynamical properties of this 
state of positronium make it appear in experimentation as two distinguishable currents, 
correlated with a 90 ~ phase difference and polarised in a plane that is perpendicular to the 
direction of propagation of interaction with other charged matter. The latter features are 
conventionally interpreted as the two photons which are produced in the annihilation 
event however, there are no photons in this theory. The spectral distribution of black- 
body radiation is then derived from the properties of an ideal gas of such pairs, in their 
ground states of null energy-momentum, as observed in a finite cavity. 

The properties of the closed electron-proton system are considered and the entire 
hydrogen spectrum is derived--including the Lamb splitting. The correct lifetimes of the 
excited hydrogenie states are then derived by considering the radiating hydrogen gas to be 
immersed in the ideal gas of pairs, that explained blackbody radiation. 

1. The Particle-Antiparticle Pair 

T h r o u g h o u t  the preceding theoret ica l  development ,  we have s tudied the 
features  o f  a formal ism,  for  ei ther  the entire closed system of  many  inter-  
ac t ing components ,  or  the ' one  body  app rox ima t ion ' ,  where we considered 
the coupl ing  o f  a single mat te r  componen t  to  an averaged b a c k g r o u n d  field 
(or  no b a c k g r o u n d  field), to represent  the r ema inde r  o f  the closed system. 
In  this section, and  in the fol lowing one, we will invest igate two very 
i m p o r t a n t  ' two-body  s y s t e m s ' - - a s s u m i n g  again  tha t  the rest o f  the c losed 
system can ei ther  be neglected or  tha t  it  can be represented  by  an  averaged 
b a c k g r o u n d  field. 
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With the assumed uncoupling of the two-body system from the rest of the 
closed system (which is nevertheless there t) we will consider, in this 
section, a solution of the coupled field equations [Part III, equation (3.8)] 
for the particle-antiparticle pair, that has particularly important physical 
consequences. This exact solution will be shown to relate to all of the 
experimental facts that are conventionally interpreted as 'pair annihilation'. 
In the following section, we will study the electron-proton system--showing 
that the entire hydrogen spectrum (including the Lamb splitting) emerges 
as a prediction of the formalism. Combining the exact prediction of this 
section with the results on the hydrogen spectrum, it will then be demon- 
strated in the following section that the correct 'lifetimes' of the excited 
states of hydrogen must also follow. 

1.1. The Field Equations for  an Electron-Positron Pair (Sachs & Schwebel, 
1961) 

Let us now consider the field equations [Part II1, equation (3.8)] to 
describe the bound electron-positron pair, neglecting the rest o f  the universe. 
Since each of these components have the same mass parameter, the field 
equations have the following form for the particle-antiparticle pair: 

{~,. O~ - J ( e  +) + h} ~(e-)  = 0 (1.1.1a) 

{Yu 0" - J ( e - )  + A} ~b (~+) = 0 (1.1.1b) 

where ~b (~+) = C~b ~-), and ( 1  i C =  ?'2K0 = 1 Ko 

-1  

is the 'charge conjugate operator'. K0 is the operator corresponding to 
taking the complex conjugate of the function to which it applies. 

As we have seen in Part III, the interaction coupling term, J ,  in electro- 
dynamics, has two terms: 

J = J1  + J z  
where 

Jl(e+) ~ b("~) = [ e+ e~ Yv ~ ~("• ~ ~ b(e• S (x  - x') d 4 x'] q~(e~) (1.1.2a) 

2 

J2(e +-) ~b ~"~ = - i g M e  ~ ~ a~( @~e• . l-'~ - yoF~t~,0.qo(~e~))~ (e~) (1.1.2b) 
~=1 

It is clear that the coupled equations (1.1.1) satisfy the requirement of 
covariance with respect to special relativity, and covariance with respect to 
the interchange of the matter field variables ~b (e-) and ~b (~+). 

Consider now the special case where the particle and antiparticle fields 
correspond to the same state of motion. In this case, the source fields in the 
electromagnetic field equations for the particle and antiparticle must also 
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be the same. This is in the sense of being characterized by the same constants 
of the motion. Denoting the latter by the index n, the spinor form of the 
electromagnetic equations (Parts II and III) for the electron and positron 
fields are respectively: fields are respectively: 

~r z~ _(e-) _ ,,&e-) F~ ~b~ e-) (1.1.3a) /~ u W~z - -  --OWn 

Crla ~ ~e--(e+) ---- ~'r,~"l'(~+) - p~ yn'/'(*+) (1.1.3b) 

In these relations we have used the notation 

e + = - e -  = e (1.1.3c) 

Substituting Cr ~e-) for ~b, (e+) in equation (1.1.3b), we have 

O'tz 9 "  ~ (e+) = e~h~ ~-) s r (1.1.3d) 

This follows from the fact that substitution of C~ (e-) for ~b (e§ in the current 
density terms ~(~§ leads to their being equal to ~b(~-)),, ~b (*-), and 
the fact t h a t / ~  are four-dimensional matrices that are linear combinations 
of the Dirac matrices ;v,. 

It then follows that when the electron and positron fields correspond to the 
same state of motion, the sum of equations (1.1.3a) and (1.1.3b) yields the 
following electromagnetic equations for the pair: 

O'p. O p (]9 (pair) = 0 (1.1.4) 

where 
~o~air) = q)(e-) _~_ q)(e +) ( l . l . 5 )  

The solution ~P"~) for the pair in this particular state of motion represents 
the electromagnetic field of influence that is exerted by the pair, as a unit, on 
other charged matter. But according to the interpretation of these equations 
as an identity (that follows from the presented theory (Parts I and I1)) the 
source field on the right-hand side of equation (1.1.4) being zero means that 
q~P"~) is also identically zero. It is then concluded that when the interacting 
components of the particle-antiparticle pair are in the same state of motion, 
this bound two-particle system will not couple, as a unit, to other charged 
matter. Nevertheless, each of the constituent interacting components of this 
pair does couple, separately, to other charged matter, since each has a 
nonzero field (of its own). It also follows that the electron and positron field 
components separately maintain their inertial properties Consequently, 
the field equations (1.1.4) for the pair does incorporate a substructure which 
would not allow the solutions to be interpreted in terms of source-free 
electromagnetic radiation. 

Finally, it should be noted that when the particle and antiparticle are in 
the same state of motion, equation (1.1.3d) in equation (1.1.2) implies that 
(under these special circumstances) 

J ( e - )  ~b (~+) = J ( e  +) ~b (~-~ (1.1.6) 
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1.2. An Exact Solution of the FieM Equations 
It will now be demonstrated that when ai = -a2 in the coupling term J2, 

then with the electron and positron fields in the same state of motion, an 
exact solution of equation (1.1. la) is 

/ e - ' a ' \  

Substituting the function (1.2.1) into the electromagnetic field equations 
(1.1.3), we have 

4 =-a,.ie(_explZiat)) (1.2.2a) 

cruO"@2~+)=e~l"2~b= 8rde( -exp?  2iAt)) (1.2.2b) 

Using the integral representation (Sachs, 1971a) for the solutions of 
equations (1.2.2), we obtain the following result: 

8rrie ( ,,, (-i6~ k~) [ 1 ~ - 4 - - 4  , 
( p l ( X )  (e+) - -  (27r)4 j exp [iM'(x~, - x~, )l k ~ - ~ - -  t_exp (2iAt,)) a ~ca x 

(1.2.3a) 

~2(x) (~+) (2zr)4 exp [ikt'(xt~ - x/)] (-i@ k [~) -exp 2iZt') d4 kd 4 x" 
k~ k ~ 

(1.2.3b) 
Carrying out these integrations, we find that 

(e + 4~'e [ 0 \ 
~o I )(x) = ~ _[exp (2iAt))_ (1.2.4a) 

(o+ 4rre/exp (-2iAt)\ 
1~02 )(X) = "--X- ~ 0 ) (1.2.4b) 

The solutions (1.2.3) satisfy the differential equations (1.2.1) while the 
integrated functions in equation (1.2.4) do not. The apparent difficulty is 
associated with the treatment of the constant part of the source fields in the 
integral form of the solutions (1.2.3), and with the associated breakdown of 
the conditions for the existence of a Fourier transform. Equation (1.2.4), in 
fact, reveals only a part of the actual solution--the part that is coordinate- 
dependent. To complete the solution, we add to the spinor (1.2.4a) the 
constant spinor 

s, = ~ ( 1 0 )  (1.2.5a) 

and to the spinor (1.2.4b), the constant spinor 

4~re [0~ 
s2 = ~ ~lJ (1.2.5b) 
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The resulting spinors, which are now unique particular solutions of the field 
equations (1.2.2), have the form 

I 1 
qh(x) = ~ kexp (2iht)] (1.2.6a) 

 e(oxpW  ) 
These are the electromagnetic spinor variables that are to be inserted into 
the coupling terms [equation (1.1.2b)], which, in turn, are inserted into the 
field equations (1.1.1). 

A similar situation occurs in the determination of the coupling term 
[equation (1.1.2a)]. The integral in this term actually stands for the particular 
solution A, of the equation 

IZA~, = 47rely, ~b (1.2.7) 

However, as we have seen earlier [Part II (Sachs, 1971c)], the D'Alembertian 
operator [] is a product of a (first-order differential) quaternion operator 
and its conjugate operator, i.e. equation (1.2.7) refers to a doubly iterated 
equation: 

% O'(~  0r Av) = 4rm0(e~yv ~b) (1.2.7') 

Equation (1.2.7) is then equivalent to the pair of first-order differential 
equations 

% Or 2 ,  = %(e~y, ~b) 
(1.2.7") 

Z~ = 5 u O, A~ 

It follows that the same technique which was used to solve the spinor 
equations (1.2.2) can be used to solve equation (1.2.7). The solutions Z' V (for 
each of the four values of v)are given by the form in equation (1.2.3), with 
the substitutions 

cp,, ~ ~u O~' Av (1.2.8) 
e~r~ ~ ~ (e~7 ~ d,) % 

Also, as in the preceding analysis of the electromagnetic equations, the 
0 

constant spinors, proportional to (10) and (1), must be added to the integral 

form of the solutions whenever the source field might be constant. As in the 
previous case, this addition completes the solution of the (first iteration) of 
the differential equation (1.2.7') and gives a null solution for a null source-- 
as required. 

Once we have solved for Z'~ = 8~,O~'A~ in this way, the operation must be 
repeated once more in order to solve for A, from the second of the spinor 
equations (1.2.7"). The form of the solution of this equation is identical with 
the first form except for the conjugation of all quaternions that appear in 
equation (1.2.3). 
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Carrying out this procedure for the specific solution (1.2.1), the following 
result is obtained for J l  [equation (1.1.2a)]: 

[4~re 2 i \  
J l  = k 2 ~ - )  (~0 --  Yl COS 2At - 72 sin 22 0 (1.2.9) 

Since the solution (1.2.1) in the function ~ 0  ~b gives rise to a constant-- 
which in turn yields a null value for the integral 

f CS(x - x') d 4 X t 

the first term on the right-hand side of equation (1.2.9) had to be derived 
from the insertion of the constant contributions to the solutions of equation 
(1.2.7'), as specified above. The second and third parts on the right-hand 
side of equation (1.2.9) follow from the integration of the right-hand side of 
equation (1.1.2b), with the insertion of equation (3.6), Part III, for the 
Green's function S ( x  - x'). 

It is readily verified that with the solution (1.2.1) for the electron and 
positron field, the following relationship is true: 

(71 cos 2At + 72 sin 22~t) ~b = 705 b (1.2.10) 

It then follows from the combination of equations (1.2.9) and (1.2.10) that 

J l ( e )  @(e) = 0 (1.2.11) 

To evaluate the second part of the electrodynamic interaction [equation 
(1.1.2b)] we substitute the spinor field solutions (1.2.6), for the electro- 
magnetic field intensity, and (1.2.1) for the matter field of the electron or 
positron. Using also the relationship (1.2.10), we then find that 

2 e 
~r (e)~b'e' =-327r t x ) g M ( a l  +a2)73~b '~  (1.2.12) 

It is at this stage where we insert a~ = -az--thereby fixing the form of the 
electrodynamic interaction J2 for all future applications. The following 
result is then obtained: 

J24 = 0 
Combining this result with equations (1.2.9) and (1.2.11), it follows that 

( J ,  + J2)~b = J~b = 0 (1.2.13) 

It is important to note, at this stage, that while the operation of the interaction 
coupling term J on ~b yields a zero value, the coupling functional J itself 
does not vanish! This is a consequence of the nonlinear features of the 
coupled matter field equations for the particle-antiparticle pair--under the 
special set of circumstances that have been specified here. 

With the result (1.2.13) in the field equations (1.1.1), it follows that (1.2.1) 
is indeed an exact solution of the nonlinear field equations for the special 
case when they describe a coupled particle-antiparticle pair in this particular 
state, corresponding to each field component in the same state of motion. 
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1.3. The Energy and Momentum Associated with Solution (1.2.1) 

It follows from Noether's theorem [see, for example, Bogoliubov & 
Shirkov (1959)] that the covariance of the field theory with respect to 
infinitesimal translations in time and space imply, respectively, the conser- 
vation of energy, P0, and momentum, Pk, defined as follows: 

P o = f ( ~ = l [ ~ ( ~ ) ) ~ o A ~ ~  (1.3.1a) 

Pk = 0(0o A~O) (c3~ A~ o) dr (1.3. l b) 
i=l  

( k =  1, 2, 3). 
The summations in these integrals are taken over all of the fields {Ar ~} 

(~ denoting the field components), and their conjugates, that describe the 
system under study. In the case of the bound electron-positron pair, these 
are the twelve field variables 

d , ( e - )  , ~ ( e - )  ,I,(e +) ,Tt(e +) ~ ( e - )  r ~ ( e - ) t  r~(e +) ~(e+Yf~  
T , T , "1" , "t" , y ~  ~ "ffo~ , yo~ , yo~ 3 

where ~ = 1, 2. 
Taking the Lagrangian density ~ in equation (1.3.1) to be the sum of the 

integrands in the contributions to the action functionals in Part III, 
equations (3.1), (3.3) and (3.4), and inserting the exact solution (1.2.1) for 
r247 and the solution (1.2.6) for the electromagnetic field solutions 9~ e• 
(e § = - e -  = e), the substitutions into equations (1.3.1) then gives the result: 

P0 = PI = P2 = P 3  = 0 (1.3.2) 

Thus we see that the particular exact solution (1.2.1) of the coupled equations 
for the particle-antiparticle pair, corresponds to a conserved energy- 
momentum that is, numerically, a null vector, with each of the four com- 
ponents being identically equal to zero. Because of the latter feature, that all 
four components of Pv are zero in some Lorentz frame, they must all be 
zero in any Lorentz frame--since P~ is a four-vector. That is to say, the 
result derived for the ground state of the bound electron-positron pair (the 
state of minimum energy) is Lorentz-invariant. 

The reason that the zero energy-momentum, for the problem under 
study, is the ground state, is due to a feature of any 'classical' field 
formalism--not allowing both positive and negative energy values to 
simultaneously be in the energy spectrum for the physical system. This 
follows from the 'classical' definition of energy in terms of a set of generators 
of continuous transformations in the function space that describes the 
physical system. The transition from positive to negative energy states (or 
vice versa) requires a discontinuous jump--an allowed type of transition in 
the quantum theory, but not so in a 'classical' field theory. Thus, starting 
from zero energy, all other energy values can be either positive or negative-- 
not both (see, e.g. Dirac, 1947, p. 272). 
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It also follows from the general form of the Lagrangian density used 
above that its invariance under rotations in space implies, according to 
Noether's theorem, a form for the conserved angular momentum for the 
electron-positron pair (in this particular state) that is identically zero (in 
all of its tensor components, separately). Thus, when the pair is in its ground 
state of null energy-momentum, this corresponds, spectroscopically, to the 
1S o state. 

Note that the features of a bound particle-antiparticle pair that have been 
predicted thus far are independent of the numerical value for the inertial 
mass parameter ~. The exact solution (1.2.1) for the ground state of the pair 
then applies to the proton-antiproton pair (and any other fermion- 
antifermion pair) as well as the electron-positron pair. This degeneracy-- 
which results from a duplication of the ground state of matter for a whole 
spectrum of mass values, is, in fact, a consequence of our use of the special 
relativistic approximation for a formalism that is intrinsically generally 
covariant. Indeed, it was shown in Part II how the combination of the 
metrical field equations (in a Riemannian space), with the matter and 
electromagnetic field equations, leads to a unique discrimination between 
inertial mass parameters as a local feature of the unification of these field 
theories. Thus, such degeneracy in the ground state of matter is removed 
when the curvature of space-time is taken into account. 

1.4. The 'Free Particle' Limit and 'Pair Annihilation' 

When the coupling functional ~r in equation (1.1.1) approaches zero, 
these coupled equations then approach the form of the 'free field' equations 
for the electron and positron, separately. The solutions are the plane waves 
which follow from the free particle Dirac theory. With these solutions in the 
Lagrangian for the system, the conserved energy-momentum for the two 
uncoupled matter fields is just the four-vector 

p(e-) .4_ n(e +) {p(e-) t~ --~'~ = +p(e+);2A} (1.4.1) 

where p~e-) and p re+) a re  the continuum values of the momenta associated 
with the limiting 'free particle' and 'free antiparticle' matter fields. The 
conserved energy, 2A, and the momenta, follow from the general expressions 
(1.3.1) when the plane wave solutions of the free particle Dirac equation are 
inserted (Dirac, 1947, Ch. XI). 

To sum up, we have seen that the general form of the matter field equations 
for an electron-positron pair, according to the elementary interaction field 
theory, predicts two different solutions that correspond to the extrema of 
the energy spectrum for this two-body system. The ground state of null 
energy-momentum, corresponding to the exact solution (1.2.1) of the 
coupled nonlinear equations (1.1.1), represents the maximum binding for 
the pair. The asymptotic 'free particle' solutions of equation (1.1.1), 
corresponding, physically, to the interaction functional being arbitrarily 
close to zero (to describe the appearance of two practically free particles-- 
particles that are effectively an infinite distance apart) represents the limit 
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of no binding. Note, once again, that this limit is not physically realizable in 
practice, or in principle (within the elementary interaction field theory), 
even though it can be approached arbitrarily closely. 

Consequently, this theory predicts that in any given 'rest frame', the 
range of energy that is available to the particle-antiparticle pair is just 
equal to 

AE = (2)t - 0) = 2)t 

If  we are talking about the electron-positron pair, this is around 1 MeV; if 
it is a nucleon-antinucleon pair, this is ~2 GeV. The physical meaning of 
this result is that it should take such quantities of energy transfer to a pair 
in this ground state (from some outside source) in order to excite it into the 
state in which the constituent components of the system look as though they 
are free particles. These events, of course, are observed and they are 
interpreted as 'pair creation'. Similarly, when a pair of such particle fields 
(that appear to be free) are in a state such that they are capable of giving up 
energy to their surroundings, then the maximum energy that can be given 
up is 2)t. This occurs when the pair goes into its ground state of null energy- 
momentum. These events are also observed, and interpreted as 'pair 
annihilation'. 

However, this theory predicts these effects, that are observed experi- 
mentally, do not entail any actual creation or annihilation of matter. The 
result follows here from the exact sohttions of a nonlinear, deterministic 
field theory, and the correlation between these solutions and the relative 
state of binding energy of the closed two-component system of particle and 
antiparticle. These processes, then, are not intrinsically statistical, as it is 
asserted in quantum field theory. There is no need to invent a 'mechanism' 
that really 'annihilates' and 'creates' matter since the experimental obser- 
vations are described here without altering the actual quantity of matter 
that makes up a closed system. 

1.5. The Continuity of Energy Values 
The general expression for the energy and momentum associated with 

the field description is given in equation (1.3.1). Since the Lagrangian .LP is 
a function that is continuous with respect to continuous changes of the 
parameters that appear in its argument, and since the field variables that 
appear in this functional are continuously distributed in their function 
space (and are not, generally, solutions of eigenfunction equations) it 
follows that the values for energy and momentum, according to equation 
(1.3.1), are continuously distributed from 0 to 2)t in the case of the particle- 
antiparticle pair. 

On the other hand, we have seen earlier (Part III) that as the coupling 
between these matter fields tends towards zero, the field equations (1.1.1) do 
approach the linear eigenfunction form of the quantum theory. In this limit, 
then, the interaction weighting, which in this theory relates to the observed 
energy values, approaches a peaked distribution. For example, the observed 
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3S and ~S states of 'positronium', that are conventionally interpreted as its 
bound states, do indicate the peaked distribution for the values of energy 
and angular momentum when these fields are very weakly coupled, com- 
pared with their maximum binding (in these states, the binding is of the 
order of electron-volts, compared with the maximum binding of the order 
of a million electron-volts). Even so, the observed energy levels for the as 
and 1S states ofpositronium do have afinite width. According to the present 
theory, the source of the finite width is the nonlinear coupling between the 
electron and positron fields. Since this can never really 'turn off', the actual 
limit of discrete energy values does not exist, even though it can be 
approached arbitrarily closely. 

The prediction then follows from this theory that as the partide-anti- 
particle energy spectrum is viewed from minimum binding (i.e. maximum 
energy = 2A) to maximum binding (i.e. minimum energy = 0), the peaks in 
the energy spectrum become less and less sharp, until they eventually wash 
out altogether, when the relative energy of coupling is sufficiently great. 

1.6. Correlation with the Experimental Facts and the Omission of Photons 
From the experimental data that imply that 2A units of energy are trans- 

ferred to an apparatus when a pair 'annihilates', it is also concluded that this 
energy is distributed equally between two 'photons', y(• that are emitted 
simultaneously and propagate in opposite directions. The conventional 
interpretation then asserts that there are photons in existence at times when 
matter does not exist. This is in contradiction with the conclusion of the 
elementary theory that 'photons' need not exist as fundamental entities 
(Part II). Therefore it is incumbent on this theory to explain all of the 
experimental facts having to do with 'pair annihilation', that are usually 
understood in terms of 'photons', without the need to introduce photons 
at all. 

First, it is clear that one does not directly 'see' the photons ),(• 
are rather inferred from the observed response of the charged matter in a 
detector (e.g. a Geiger counter) to the other charged matter in the 'source' 
of interaction. Might it then not be possible that the actual observations can 
be explained in terms of a direct current-current coupling, without the need 
to introduce the intermediate 'photons' ? It will now be shown that this is 
indeed the case. 

We have seen above that when an electron-positron pair should go into 
its ground state of null energy-momentum, the maximum energy that 
would be transferred to a detector--say two Geiger counters, is 2A. This is 
in agreement with the experimental facts. To complete the comparison with 
the experimental facts, however, it is further required to show that when 
these two Geiger counters are equidistant, along a common axis on each 
side of a source of electrons and positrons, they would respond simul- 
taneously (i.e. in coincidence), each absorbing the quantity of energy equal 
to ~. 

The simultaneity of the response of the two counters in this problem 
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follows automatically from the theory since here one does not have separate 
space-time coordinate systems. The fields describing the interaction between 
the pair and the detecting apparatus are all mapped in one space-time; that 
is to say, the interactions that are described by all of the field variables of the 
theory depend on only one time parameter. Further, since the solution 
(1.2.1) (in its particular Lorentz frame) does not single out any spatial 
orientation, it follows from the isotropy of the description, and the feature 
of this theory that energy is not transferred into free space, that in the 
macroscopic measurement, where the two Geiger counters actually respond 
to a large system of particle-antiparticle pairs, as they go into their null 
energy-momentum state, each counter should absorb half of the total 
transferred energy. Thus the theory predicts, in agreement with experiment, 
that there should be a correlation between the 'pair annihilation' process 
and the coincident transferral of A units of energy (on the average) to each of 
the two detecting counters. 

1.7. Dynamical Properties of the Ground State (Sachs, 1968c) 

With the idea that the electromagnetic source fields serve only as factors 
in the description of the coupling of the pair to a detecting apparatus, it 
might be more instructive at this point to express these variables in terms of 
the usual charge and current densities of the standard Maxwell theory--as 
the directly detectable variables of the electron-positron pair. 

The proper identification was shown in Part II to have the following form 
(in a particular Lorentz frame): 

\Jl • ij2] 
(1.7.1) 

e_+ ~(es)/"2 ~ b(e• = 47ri( - ( j l  -- ij2)] 
\ P+J3 ] 

Comparing equation (1.2.2) with equation (1.7.1), the source fields (for 
= 1, 2) for the pair in its ground state can be expressed with the usual 

variables as follows: 

~ =  1: P =2e• J3 = 0 ,  .Jl +ij2=2e+exp(2iAt) (1.7.2a) 

= 2: P = 2e+, J3 = 0, Jl - /J2 = 2e + exp (-2iht) (1.7.2b) 

It is clear from this form that the ground state of the pair corresponds to 
two oppositely polarized currents that are mutually transverse with respect 
to the x3-direction. Thus, the coincident response of two equidistant 
counters at the time t would be to two spatially transverse currents that are 
90 ~ out of phase with each other. The response of the counters here would 
be due to the direct coupling with these two distinguishable currents. This 
assertion will now be demonstrated. 

To derive the effect of the currents jl  -4- ij2 =j+_ of the pair (located, say, at 
the origin) on two counters, at • it will be necessary to calculate the 
corresponding electric field intensities, E• at the locations of the counters. 
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This, of course, is because it is the electric field intensity that determines the 
motion of a test charge in the detecting apparatus. 

In the Lorentz frame of the detecting device, the electromagnetic vector 
that corresponds to the oppositely polarized current densities, j• is 
determined from the particular solutions of D'A1embert's equation 

DA• t ')  = 4~-j+(r', t ') (1.7.3) 

where (r', t ')  are the coordinates of the test charge in the apparatus, while 
(r = 0, t) are the coordinates of the source--the pair itself. The solution of 
equation (1.7.3) is 

A+(r' t') = f j• S(x - x') d 4 x (1.7.4) 

where S(x  - x') is the Green's function [Part III, equation (3.6)]. This is the 
form that is symmetric in the advanced and retarded terms. However, it 
should be noted that because of the symmetry of the experimental set-up in 
this particular problem, the result to be derived on the responses of the two 
counters (on opposite sides, along a common axis with, and equidistant 
from the plane of polarization of the source currents j+) is insensitive to the 
appearance or lack of appearance of the advanced term in the Green's 
function. 

Since j3 = 0, the substitution of the Green's function [Part III, equation 
(3.6)] into equation (1.7.4) (with r = 0) yields the following solution: 

As = f j3(t) S(x  - x ' )d4x  = 0 

(2e • 
A• t ') = ~ {exp [i2iA(t" + r')] + exp [• - r')]}~• (1.7.5) 

where ~• = ~1 • ie2 and ~ is a unit vector in the ith direction. 
It then follows from (1.7.5) that the electric field intensities E+(r', t') at 

the sites of  the counters (representing the effects of the polarized current 
densities j• of the particle-antiparticle source) have the form: 

OA+ (2i)te +) )t ' ' . . . .  q: ~ {exp [• (t + r )] + exp [• - r')]} r177 E.(r' ,  t') Ot" 

(1.7.6) 

Thus we see that E• describes the wave motion of an oscillating charge, 
with angular frequency to = 2A = 2me2/h and a propagation vector whose 
magnitude is to/e. (m is the rest mass of the electron. Planck's constant 
h = 2~-h and the speed of light, e, are inserted above for illustrative purposes. 
We are using units throughout with h = e = 1.) 

It follows, then, that when the phase of the current has some fixed value, 
say zero, at t = 0, then the phase of the electric field at r ' ,  which is produced 
by this current, would not become zero until the later time t '  = r'/e in the 
retarded solution, and t' = - r ' / e  in the advanced solution. Thus, the 
magnitude of the time taken for propagation of the electromagnetic inter- 
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action between the pair and each of the detectors (that are located a distance 
r" from the pair) is r'/c. 

A salient point is that for the solution E+, the sign of the propagation 
vector is positive in the retarded term and the sign of this vector is negative 
in the advanced term. The oppositely polarized current density,j_, gives rise 
to the electric field intensity E_ with the same functional form as E+ except 
that the propagation vector in this case is negative in the retarded term and 
positive in the advanced term. 

Thus we see that the oppositely polarized currents, j• at the common 
spatial location (r = 0) give rise to oppositely polarized electric field vectors 
that propagate in opposite directions--such that when each counter is an 
equal distance r" on each side of the pair, along a common axis, they will 
simultaneously detect oppositely polarized currents at the time t '=  r'/c, 
each absorbing the energy equal to rod. 

This derived result agrees with the experimental facts and with the law of 
energy conservation. It also agrees with the prediction of the model of 
quantum field theory which asserts that two photons are simultaneously 
created when the pair 'annihilates'. However, the present theory does not 
require the introduction of 'photons' nor that matter should really 
'annihilate'. A most important difference in the two theories lies in the 
deterministic field approach of this derivation of the experimental facts, 
compared with the intrinsically statistical approach of the quantum field 
theoretic assertion about these facts. 

1.8. The Wu-Shaknov Experiment and Angular Momentum Conservation 
(Wu & Shaknov, 1950) 

According to the experimental observations, the electron-positron pair 
are in a singlet S-state just prior to the event interpreted as 'annihilation'. 
This implies that the two photons that are supposedly created in the process 
must be oppositely polarized in a mutual plane that is transverse to their 
oppositely directed motion if angular momentum is to be conserved. The 
preceding derivation of the elementary interaction theory, relating to the 
detected pair of currents of the electron-positron system in its ground state, 
also agrees with this assertion about angular momentum conservation. In 
addition, however, the quantum mechanical requirement for an anti- 
symmetric wave function to describe the pair in its singlet state, implies that 
the final state of two photons must correlate the phases of their polarization 
vectors with a 90 ~ phase difference (also predicted by the present theory, as 
we have seen above). 

To test the latter consequence, Wu & Shaknov (1950) designed an 
experiment to measure the coincident counts of two linearly polarized 
radiation fields that have been Compton scattered through an angle 0, 
relative to their initial direction of propagation. The significance of this 
experiment lies in the sensitivity of the Compton cross-section (for the 
scattering of coincident radiation beams) to the correlation of their 
polarizations. 
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When the mechanism of scattering is the Compton effect, and the two 
radiation fields are perpendicularly polarized, it follows from the Klein- 
Nishina formula (Heitler, 1944) that the ratio of coincident counts for 
perpendicularly polarized radiation is exactly 2.00 for cases when the 
scattering planes (formed by the initial and scattered directions of the 
radiation) are perpendicular and parallel, and where the angle of scattering 
in these planes is averaged over. The ratio that was measured by Wu and 
Shaknov was 2.04 • 0.08. Consequently, this experiment confirmed the 
quantum mechanical prediction about a 90 ~ phase correlation in the 
coincidentally scattered radiation beams. But according to the development 
in the preceding paragraphs, this result was also an experimental verification 
of the prediction of the elementary interaction theory. 

1.9. The Compton Effect 

Since the conclusions from the results of the Wu-Shaknov experiment 
depend on an identification with the usual expression of the Compton 
cross-section, it is necessary to show here how the same expression appears 
within the elementary interaction field theory. 

Considering the process in which an electron-positron pair is scattered 
by an electron, this theory actually sees this process in terms of a tightly 
bound pair (the 'projectile') coupled weakly to a third matter field com- 
ponent (the 'target') of  a closed system. The mathematical description, then, 
is in terms of a set of three coupled field equations [of the type in Part III, 
equation (3.8)] in which one of the equations can be assumed to be approxi- 
mately uncoupled. In this approximation, the latter takes the form of the 
Dirac equation for a 'free particle'. The pair, in turn, is described as it was 
in the preceding paragraphs [equation (1.1.1)]. 

The next step, to derive the Klein-Nishina formula, is to introduce a 
small coupling between the pair and the target (almost free) electron and to 
treat this as a perturbation on the free particle solutions for the target 
electron. 

We have seen that when the particle-antiparticle pair is in its ground state 
of null energy-momentum, it behaves, dynamically, as a pair of oppositely 
polarized current densities, whose phases are correlated with a 90 ~ difference; 
and that in this state, the pair has the same dynamical features as a pair of 
photons that are conventionally evoked to explain the data on 'pair an- 
nihilation'. The electromagnetic potential that corresponds to the indepen- 
dent currents (1.7.2), and solves equation (1.2.7), has the same time 
behavior as the current densities. If  one should make a Lorentz transfor- 
mation to the rest frame of the (assumed uncoupled) target electron, then 
the effective vector potential for the pair that acts on the target electron 
(rather than on an apparatus, as in the preceding example) takes the 
following form, in a unit volume: 

A 3 = 0 ,  A+ c~ exp [• -- k.r)] (1.9.1) 
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where 
2mc 2 

o~ = ~ -  [(1 - 8 ) / ( 1  + 8 ) ]  ' /2 ,  k - ~o 
c~ 

and fl is the relative velocity of the target and projectile systems (in units 
ore). 

With the exact solution (1.2.1) for the pair in its ground state, and the 
approximation of weak coupling between the pair and the target electron, 
the usual formal perturbation technique can be applied to determine the 
scattering cross-section. To first order, the perturbing interaction is 
e~bT~ ~bA m where ~b is the free field Dirac solution for the target electron and 
A, is the effective electromagnetic four-potential--the space part given in 
equation (1.9.1). The Coulomb component, Ao, for the electron-positron 
pair is, of course, zero. 

The interaction, e~7" ~A,, between the particle-antiparticle pair (as the 
'projectile') and the target electron, which is predicted by the elementary 
interaction theory, is then seen to be identical with the interaction between 
a projectile 'photon' and the target electron, in the Compton effect. It then 
follows that the application of perturbation theory to this problem yields 
the Klein-Nishina formula for the Compton cross-section, derived in the 
usual way. The predictions of this theory are then identical with those of the 
quantum theory in regard to the correlation of the polarizations that was 
observed in the Wu-Shaknov experiment. 

It should be noted at this stage, however, that if the coupling between the 
pair and the target electron should become increasingly great, the tendency 
would be to excite the pair into a state that no longer displays the dynamical 
properties that are identical with those of 'photons'. It rather might indicate 
a behavior that appears as 'pair creation'. To describe the latter process in a 
quantitative fashion would then require the consideration of the solutions 
of three coupled nonlinear equations--for the projectile 'pair' and the 
target electron--all strongly coupled. 

1.10. Blackbody Radiation (Sachs, 1965) 

It will now be shown that the experimental results that are used to deduce 
the properties of a 'photon' gas from the spectral distribution of blackbody 
radiation are equally explained in terms of an ideal gas of particle-anti- 
particle pairs, rather than photons, when the pairs can be assumed to be in 
their ground states of null energy momentum, as derived above. 

A cavity is maintained at a constant temperature so that the 'radiation' 
within it can come to thermodynamic equilibrium with the matter of the 
cavity walls. The energy density within the cavity is then measured as a 
function of frequency from the response of charged matter (the detecting 
apparatus) that couples to the inside of the cavity through a small window 
in its wall. 

The first remarkable feature of these experiments was the insensitivity of 
the resulting spectral distribution to the nature of the constituent material 
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(i.e. the atomic makeup) of the cavity walls. It then appeared that the 
radiation in the cavity was not dynamically coupled to the states of motion 
of charged matter that constitute the walls--but is rather an entity that, once 
emitted by the walls, is independent of this matter. Then, it was found that 
when kept in thermodynamic equilibrium with the cavity walls, at the 
constant temperature T, the spectral distribution of this radiation could be 
fit to the Planck formula: 

du/dv = (8 r rhv 3 )  1 
c 3 exp (hv/kT) - 1 (1.10.1) 

where du is the density of radiant energy in the frequency range between v 
and v + dv at the temperature T. This behavior of the energy density with 
frequency and temperature, as well as the experimental fact about its 
insensitivity to the type of material that constitutes the cavity, are the 
empirical facts about blackbody radiation that are to be explained. 

Instead of a 'radiation gas', let us assume that the cavity in this experi- 
mental set-up is populated by an ideal gas of particle-antiparticle pairs that 
are each in their ground states of null energy-momentum. We will now 
express the full set of coupled field equations [Part III, equation (3.8)] as 
follows: 

0(1 +, 1-, 2 +, 2 - , . . . ,  n +, n-;f) ~b"+)(x) = 0 

0(1 -, 1 +, 2 +, 2 - , . . . ,  n +, n - ; f )  ~b~ = 0 
: (1.10.2) 

O(n-,n +, 1 +, 1-, . . . .  ( n -  1)+, (n - 1)- ; f )  ~b("-)(x) = 0 

0(f; 1 +, 1 - , . . . ,  n +, n-) ~bm(x) = 0 

where 

O(l+, l- , . . . ,n+,n-;f)= {y~Ov-- A-- J(el-) + k, ~ t+ J(k)} 

The labels n + in these equations refer to the particular (e- - e +) set in the 
gas that are tightly coupled. The two solutions, ~b c"+) and ~br that are 
denoted in this way are related according to the charge conjugation trans- 
formation [equation (1.1.1)]. The labels f refer to the field variables that 
relate to the interacting matter fields of the cavity walls and the detecting 
apparatus. 

In the asymptotic limit, when the term J (k) ,  (k # 1 +, 1-) can be assumed 
to have a negligibly small effect on the solution ~b (1+) compared to the effect 
of J ( 1 - )  on this solution, the field equations (1.10.2) reduce to n/2 uncoupled 
sets of two coupled field equations for the particle-antiparticle pairs (as 
well as the field equations that describe the interacting charges in the cavity 
walls and the detecting apparatus). In the consideration of this asymptotic 
limit, note that the formalism reduces to the description of n/2 distinguishable 
interactions. 

It was shown earlier, from the features of the ground state solution (1.2.1) 
of the pair, that the sum of the electromagnetic equations for the electron 
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and positron field, when each are in the same state of motion, gives the 
equation (1.1.4) that is source-free. Recalling that the physically admissible 
solutions of these equations are only the particular solutions (according to 
the elementary interaction theory), the electromagnetic field intensities 
~o tpa~r) associated with the pair, as a unit, is identically zero. It then follows Ct , 

that the ideal gas of such pairs in the cavity will not couple electromagneti- 
caily to the walls--they will appear as though they are dynamically un- 
coupled from the moving charged matter in the walls of the cavity, a 
prediction that is in agreement with the experimental facts. 

Recall also, however, that each of the two components for the pair can 
separately couple, electromagnetically, to other charged matter. Thus, when 
in the ground state of null energy-momentum, each of the components of 
the pair is capable of absorbing some energy from the walls of the cavity-- 
from its direct electromagnetic coupling to currents in the wall (which 
would occur in an incoherent fashion)--thereby decreasing the relative 
binding of the pair to any amount. (Recall that the relative energies of the 
pair are in a continuum, rather than a discrete spectrum.) The pair would 
eventually convert this absorbed energy into increased kinetic energy, before 
giving the energy back to the charged matter in the walls, thereby returning 
to its ground state of null energy-momentum. Such is the energy exchange 
process that maintains this ideal gas of pairs at a constant temperature T, 
with respect to the walls and bath that are maintained at this temperature. 

The energy density that is detected in the cavity is predicted from the 
expressions of the form given in equation (1.3.1a), where the sum is now 
taken over all electron and positron solutions for the ideal gas of pairs, the 
cavity walls, and the detecting apparatus. With the energy of mutual 
coupling for each of the pairs being zero (when in the ground state, described 
by the solution (1.2.1)) the only nonzero contribution to (1.3.1 a) comes from 
the coupling of the pairs, in terms of their individual electron and positron 
components, to the charged matter of the detecting apparatus. The corre- 
sponding matter f ieM components are the stationary states with frequency 
oJ o. The latter frequencies are the controlled values in the experimental 
arrangement of this study (e.g. the frequencies associated with the fight 
filters, etc.). Thus the fields that contribute to the observed energy density 
have the form 

r oc V-l/2exp(-io~0 t) 

It follows that the corresponding energy density contributions reduce to 
the form 

p(,oo) = f 0o0dr = f ih~b (~ Ot~b (~ dr = hWo (1.10.3) 

for each frequency to o of the detecting apparatus. 
Using the effective vector potential associated with each of the pairs in 

the cavity [equation (1.9.1)] and the continuous distribution of frequencies 
relative to a given frame of reference [indicated in equation (1.9.1)] it 
follows that for any detector frequency ~o 0, the apparatus will respond to 

12 
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the interior of the cavity (through a small window in its wall) at frequencies 
that are integral multiples of this driving frequency. This follows from the 
finiteness of the cavity and the requirement of restricting the interaction to 
its domain. For a given detector frequency COo, the energy of the ruth mode 
of interaction between the detector and the ideal gas of pairs (in a volume V) 
is then 

(VOoo)m = mhcoo (m = 1,2, 3 , . . . )  (1.10.4) 

We see here that the response of the detecting apparatus to the individual 
pairs in the cavity will display a set of distinguishable interactions, each 
labelled with the particular mode of oscillation m. 

With the establishment of a constant temperature, T, in the gas of pairs, 
MaxweU-Boltzmann statistics may then be applied to the system of 
distinguishable interactions, to determine the statistically averaged energy. 
Thus, 

exp [-mhc%/k T] (mhc9o) 
V(Ooo) = m=o = h~176 (1.10.5) 

,,~" exp [-mh~oo/kT ] exp (hwo/kT) - 1 
m=0 

Finally, dividing this expression by the volume of the cavity and then 
weighting the averaged energy density with the differential increment of 
detecting frequency modes per frequency interval, we arrive at the expression 
for the energy density per frequency interval--the quantity that is to be 
compared with the observations. 

The density of modes is derived in the usual way from the volume of wave 
vector space, as follows: 

dw ~ - doJ0 ~ dko = 3 (1.10.6) 

The factor 2 appears in equation (1.10.6) because of the fact that the 
detector, with a given frequency, can respond to either of the two source 
fields [equation (1.7.1)] that are associated with the pair in the cavity. These, 
in turn, correspond to the two oppositely polarized currents. 

The product of the right-hand sides of equations (1.10.5) and (1.10.6) is 
the density of interaction energy per interval of the detectable frequency 
spectrum. The result 

du dg heo0 3 1 (1.10.7) 
&o 0 = (0~176 &o 0 = ~r z c 3 exp (hoJo/kT) - l 

is the desired distribution function that was originally discovered by Planck 
and shown to agree with the spectral distribution of blackbody radiation. 

With this result and the preceding analysis, which indicated that the 
observations interpreted as pair annihilation and creation can be derived 
from the features of a bound state of a particle-antiparticle pair--without 
the need to introduce photons at all--it has been demonstrated that 
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electrodynamics, within the completely field theoretic approach to an 
action-at-a-distance theory (the elementary interaction theory) can indeed 
totally dispense with the photon concept. 

2. The Electron-Proton System 
Our determination of the exact solution (1.2.1) for the ground state of the 

bound electron-positron pair was facilitated by the intrinsic symmetry in 
the field equations for this particular case. Specifically, the symmetric 
features of the problem that led to the solution were (1) the inertial mass 
parameter for each of the coupled fields are the same and (2) the electron and 
positron solutions each corresponded to the same state of motion. 

In this section, we treat a two-body system that has neither of these 
symmetry properties. The mass parameters, m and M, for the electron and 
proton respectively, differ by several orders of magnitude. Further, the 
states of motion of these two components of the system are quite different-- 
it will be assumed that the proton is stationary while the electron field 
corresponds to an orbiting motion. 

At the present stage of the investigation no exact solution has been 
found for the electron-proton system. The solutions that will be studied here 
instead follow from an approximation scheme in which the field equations 
are linearized. This is justified in view of the fact that the ratio of masses, 
re~M, is sufficiently small so that the actual momentum transfer to the proton 
field in this bound system can be assumed to be negligible. This is physically 
equivalent to the statement that for the binding energies considered in the 
bound states of hydrogenic atoms, one can neglect the recoil of the proton. 
Thus we assume that the proton field describes a source of binding at a 
point, that is, it is at a stationary location, relative to the coordinates of the 
electron field. This, of course, is equivalent to using Dirac's assumption, in 
his structuring of the hydrogen equation, when he takes the covariant term 
~(e)y, ~b(e)A(p) and approximates it by the Coulomb term 5b (~)* ~b(e)A~o p), 
where A~o p) = ie/r and r = 0 locates the stationary proton. 

With this approximation, it will be shown that the entire hydrogen 
spectrum, including the Lamb shift, emerges from the coupled field equations 
for the electron-proton system. It will then be shown how the enlargement 
of this two-particle system that would include a background (ideal) gas of 
particle-antiparticle pairs, in their ground states of null energy-momentum 
(derived in the preceding section) leads to the correct lifetimes for the 
excited states of hydrogen. 

2.1. Linearization of the Field Equations (Sachs & Schwebel, 1961) 
Starting with the field equations [Part III, equations (3.8) and (3.9)], 

applied to the electron-proton system, we must consider the solutions of 
the coupled equations: 

(~,. a ,  - J ( p )  + ~) ~ = 0 (2.1. l a )  

(y. O" + 3r + A) ~b (p) = 0 (2.1.1 b) 
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where A and _// are the reciprocals of the Compton wavelengths, mc/h, 
Mc/h, of the electron and proton, respectively, and ra and M are their 
inertial masses. The coupling field, ~r is defined for electrodynamics in 
Part Ill, equation (3.9). 

We will now consider the proton solution, ~(P), to have the following 
stationary form: 

~b (') = exp (-iAt)f(r) s (2.1.2) 

where s is a constant four-component spinor, the only requirement on it, 
generally, being that it must be normalized, i.e. s+s = 1. 

Dividing equation (2.1.1 b) by A, we have the equivalent equation: 

( 1 0 ~  k e  ) ~ ' 0  - -~yk  0 + ~ J ( e ) + l  ~b(P)=0 (2.1.3) 

The operator, (1/A)yka k, corresponds to the ratio of kinetic energy of the 
proton to its rest energy. Since we have assumed that the proton's motion 
(relative to the electron)--i.e, its recoil energy--is negligible compared with 
its rest energy (HI GeV), we may neglect this term. The operator, eJ(e), 
corresponds to the ratio of electron-proton binding (~eV) to the proton's 
rest energy. This may also be assumed small enough to neglect (for the 
purposes at hand). Neglecting these two terms, and choosing s + = (1 0 0 0) 
(in this Lorentz frame), equation (2.1.3) approaches the form: 

(A ,O 0~ 1)exp(- iAt) f (r)s=O (2.1.4) 

That is, with these approximations, the function (2.1.2) correspondingly 
approaches an exact solution of the proton equation (2.1. lb). 

Next, it is observed that the space-dependent part, f(r), of ~b(p) may be 
chosen arbitrarily, without altering the validity of equation (2.1.4). 
Appealing once again to the physical argument that led to the assumption of 
a stationary point proton, we may takef(r) to be defined such that 

If(r) 12 = 3(r) (2.1.5) 

where 3(r) is the three-dimensional Dirac delta function. 
The insertion of the resulting proton solution into ~r in the electron 

equation (2.1.1a) then gives rise to the explicit form of the operator that 
determines the electron states in hydrogenic atoms. 

Using equation (2.1.5) in equation (2.1.2), 

~ P )  Yk @(P) = 0, ~(P) Y0 ~(P) = ~(r) (2.1.6)  

where k = 1, 2, 3. According to Part III, equation (3.9), the interaction 
coupling t e rmJ  (p) has two parts. Inserting (2.1.6) into the first part, we have 

J(P), = ~o e/r (2.1.7) 

This is the term that arises from the Coulomb potential of the proton, at the 
electron site, in the usual Dirac theory for hydrogen. 
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Before the second part, ~r can be determined, we must know the 
explicit form of the spinor solutions ~v) of the electromagnetic field 
equations. Inserting the proton solutions into the electromagnetic field 
equations, Part II, equation (1.5), we have 

%Ot*q)~ v, = -4rdeS(r) (10) 

(2.1.8) 

% 0" ~IP' = 4TrieS(r) (~) 

The solutions of these equations have been determined (Sachs, 1971a) 
where it was found that 

X3 

(2.1.9) 
ie ( x ,  - ixa i 

q~2 = 73 \ - x 3  / 

Finally, substituting the solutions (2.1.9) into J(P)2 and using the result 
al = -az  = +1 (that was determined in the previous analysis of the ground 
state of the particle-antiparticle pair) the following explicit expression is 
obtained: 

�9 e 

J(P)2 = 16rr(tgM) 73 (r • Y)3 (2.1.10) 

The noncovariant 'look' of this interaction term is a consequence of 
using the approximation in which the vector potential Au in the electron 
equation is replaced by the single term A0 (for the Coulomb potential). 
Note, however, that the exac t  form for this term (the second part of the 
functional in Part Ili, equation (3.9)), is clearly relativistically covariant. 
This (exact) form is a form of one of the relativistic invariants of the theory, 
denoted earlier by combinations of q0*~ Y~ (Part II). These are invariants of 
the spinor form of electromagnetism that we have indicated earlier do not 
have any counterpart in the standard vector representation of the theory. 

Combining equations (2.1.7 and (2.1.10), the l inearized field equation 
(2.1.1 a) for hydrogen can be expressed in the form: 

.~, ~ e 2 (16rrgMe2)(r x =)3 
-o : ,p ,  - t 7 3 K  + --r + r 3 

The following notation has been used above: 

/3 = yo, ~ = iyoy, R =  fl(a.L + 1), 

fiA + E} ~(~) = 0 

�9 a 

(2.1.11) 

o~ . r  
O ~  r - -  

r 

(2.1.12) 
where L is the orbital angular momentum operator - i t  x V. 

Following the usual procedure (Schiff, 1949), we introduce the following 
change of variables: 

p = r F 
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where 
~=-Jf-~g/(T]lT]2), ~i =A--t-E, 

The wave equation (2.1.11) then takes the form: 

where 

, l z = ) t - E  

.E = + r  (2.1.13) 

i~/~r = i{%(~p+~ ) %flIs i(y_+flA]l\p ~1/I ~ (2.t.14) 

is the unperturbed (generalized) Dirac Hamiltonian for the hydrogenic 
electron, and ~, is the fine structure constant, e2/hc. 

If we should now make use of the well-known derivation of the eigen- 
functions and eigenvalues of the Dirac unperturbed Hamiltonian for 
hydrogen, the extra term, V, in equation (2.1.13) may then be applied as a 
perturbation on these eigenfunctions, and the corresponding effect of the 
Dirac eigenvalues may then be determined. 

The eigenvalues of the unperturbed Dirac Hamiltonian, i~r for hydrogen 
may be expressed as follows: 

/ ] -1/2 
E,.~/ ~A 1 + ~ ]  (2.1.15) 

where 
s 2 = K 2 _ y2, K 2 = ( j +  �89 

J is the total angular momentum quantum number and n is any positive 
integer (0,1,2,...). In the usual spectroscopic notation, (n + 1) is called 
the 'principal quantum number'. The energy eigenvalues [equation (2.1.15)] 
are precisely those which are predicted by the Dirac theory of hydrogen. 
Except for the Lamb splitting, these are in quite close agreement with the 
energy level spectrum of hydrogen. That is to say, without the term Vin the 
Hamiltonian, (2.1.13), the present theory (with the linear approximation 
that has been used in this section) is in exact agreement with the Dirac theory 
of hydrogen. 

2.2. The Lamb Splitting 
The feature of the predicted energy spectrum (2.1.15) that does not agree 

with the actual data is the accidental degeneracy that appears in the Dirac 
theory, in the hydrogen states whose principal quantum numbers are 
greater than (their minimum value of) unity. Thus, the Dirac states with the 
pair of eigenvalues ~ (of the operator/~) correspond to the same energy 
values Es,. When, for example, J =  �89 the states (n + 1) S1/2 and (n + 1)Pl/2 
of the Dirac theory are degenerate. Nevertheless, it was discovered by Lamb 
and his co-workers (Triebwasser et aL, 1953; Lamb & Sanders, 1956) that 
the energy of the 2S1/2 state is greater than that of the 2P m state, and 
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similarly, the 3S1/2 energy is greater than the 3P1/2 energy. If this result is to 
be predicted by the elementary interaction theory, it must come from the 
additional interaction I?that appears in the completed Hamiltonlan (2.1.13). 
It will now be shown that this is indeed the case. 

The perturbing potential 

K (p • a)3 (2.2.1) i V  = p2 p 

in equation (2.1;.13) can be seen to lift the accidental degeneracy in the 
eigenstates of i ~ o  because of its lack of reflection symmetry in both space 
and time. The strength of this interaction is measured by the constant 

= 16~gM ~ = [(s + n) ~ + ~1  '/2 (2.2.2) 

where ;~c is the (reduced) Compton wavelength (h/me). This is the reciprocal 
of the mass parameter that we have denoted as t. 

It is observed that the potential iI ~" diverges at the origin as O -2. In order 
to ensure that the solutions of the unperturbed matter field equations have 
a behavior at the origin that would lead to a rapidly convergent perturbation 
expansion of functions that depend on p-n (n > 2), let us re-define the 
unperturbed and perturbing energy operators in equation (2.1.13) by 
adding and subtracting the term 

iKCtp/p 2 

This expression is not chosen only because it depends on the radial coordi- 
nate in the same way as 12; it also depends on the Dirac matrix or, which 
mixes the large and small components of the Dirac (unperturbed) solutions, 
just as the actual perturbing potential 17 does. 

Thus, we take 
_ ~p] i~o' = i ~ o  p2 ] (2.2.3) 

as the unperturbed Hamiltonian operator and the remaining portion, 

x ~)3 ~ i%] i17' = p2[(P p (2.2.4) 

may be considered as the perturbing term. Clearly, the problem has not been 
altered by this change, since 

~#  = j #0  + f ' =  ~#o' + f "  

The electron equation 

~o'~ = --~e~ 
can be solved exactly, giving the solutions 

= ~b o exp (-~:/p) (2.2.5) 
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where ~bo are the eigenfunctions of the original Dirac Hamiltonian [equation 
(2.1.14)] for hydrogen. Note that ~b converges at the origin more rapidly 
than any polynomial in lip would diverge there. 

The accidental degeneracy in the first excited state of hydrogen is 
described by the two orthogonal wave vectors, ]+K) and I-K>, that 
correspond to the same energy value, according to equation (2.1.15). The 
eigensolutions that are characterized by the angular momentum quantum 
numbers, J = �89 J3 = +�89 are as follows: (Bethe & Salpeter, 1957). 

/ F_@) \ 
0 

I-K}.=l_icosOG_(n) ~ exp(-K/p) (2.2.6) 

\ - i  sin 0 exp (i~) G_(n)l 
cos OF+(n) \ 

[+K), = sin Oexp(i~o)F+(n) | 
_iGo+(n) 7 exp (-K/p) (2.2.7) 

where [Kr = 1 .~TF+/p and ~G+/p are respectively the large and small 
components of the radial solutions of the Dirac equation for hydrogen, 
with the appropriate values of K = -4-1. 

It is readily verified that after the integration over angular variables has 
been carried out, the pertinent matrix elements have the values 

(4-glifz'l :F K) = 0 (2.2.8) 
co 

(4-K[iV'l+K):i3--~ f ~exp(--2tc/p)d p (2.2.9, 
0 

where (inserting h and c) 

16,r (~c_c~) "gn = 7]hcK = (S + iv/) 2 + ~2 73(mc2) (2.2.10) 

It then follows that the difference between the energy values associated with 
the states, conventionally labelled as (n + 1)S112 and (n + l)Pllz, is 

E[(n + 1) S1/2] - E[(n + 1)Pl/2] = A. 

64rr (__~cM) =3[(s+n)2+~,2 ] 741I++I_[,(mc 2) (2.2.11) 

where 

i/._+ i = 07~,)_ , ,(F_+(n~_+(n) exp (-2~@) dp (2.2.12) 
0 

The integrals in equation (2.2.12) are evaluated in the Appendix in terms of 
combinations of modified Bessel functions of the second kind (usually 
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denoted by K,.). Using the explicit expressions for the radial Dirac functions, 
the resulting integrations (in the Appendix) give the following values for 
I/+ +/_[ , ,  for principal quantum numbers 2, 3 and 4 (to the leading order 
in 7 2): 

1I+ + 1_11 = (1/3) + O(y 2) (2.2.13a) 

II+ +/--]2 -- (2/9) + 0(72) (2.2.13b) 
II+ + I-J3 ---- (1/6) + 0(71) (2.2.13c) 

Combining equations (2.2.10), (2.2.11) and (2.2.13), it is found that to 
order 74 , the Lamb splitting in the first excited state of hydrogen (principal 
quantum number (n + 1) = 2) is 

d i = (I 6~r/9) y4(gM/~C) (mc 2) (2.2.14) 

The ratio of the Lamb splitting in the next excited state, (n + 1) = 3, to the 
splitting A ~ is then found to be 

A2/A 1 = 0.2965...  (2.2.15) 

The significance of  theoretical ratio of Lamb splittings is that, to the 
accuracy which is required to make the comparison with the data, its 
magnitude is independent of the extra fundamental constant of this theory, gM. 
Only after a favorable comparison can be made with the ratio in experiment 
and theory (where there are no adjustable parameters !), will we use the most 
accurately measured Lamb splitting to determine the magnitude of g~t. 

The experimental values for the Lamb splittings are: 

[E(2SI /2 )  - -  E ( 2 P l / z ) ] / h  = 1057"77 4- 0'01 MHz 

[E(3SI/2) - E(3P1/2)]/h = 315"0 4- 0"3 MHz 

Thus, the experimental ratio to be compared is 

(A2/A l)oxp = (315"0 4- 0.3)/(1057.77 4- 0.01) 
= 0.2978 4- 0-0003 (2.2.15') 

The comparison of the theoretical ratio (2.2.15) and the experimental 
ratio (2.2.15') reveals that their difference is only of the order of 0.2 ~o. In 
view of the approximations that have been used in this theoretical analysis 
of the hydrogen spectrum, it can be concluded that at the present stage of 
computation, the theory is successful in its comparison with the data. 

With this result, then, it has been demonstrated that the elementary 
interaction field theory predicts the observed energy level spectrum of 
hydrogen--including the Lamb splitting. It should be emphasized that, in 
contrast with the conventional explanation of the Lamb splitting--which 
appeals to the enlargement of the electron-proton system so as to include an 
infinite sea of radiation and pairs, annihilating and being created (at 
arbitrary times) but on the average causing the proper fluctuations in the 
spectrum of hydrogen to give the effect, the present theory derived the Lamb 
effect as a property of the electron-proton system alone. It has followed here 
from the generalization of the Coulomb potential in the hydrogen equation, 
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which appears as a natural consequence of the factorization of the electro- 
magnetic field equations from the standard (Maxwell) vector representation 
to the two-component spinor representation. The extra interaction in the 
Hamiltonian for hydrogen is an approximation for the generalized inter- 
action terms that appear in this theory which have no counterpart in the 
standard Maxwell formulation. In this way, the Coulomb potential, e/r, in 
the hydrogen wave equation, is generalized by adding a term that is less 
symmetric than a central potential, thereby causing a lifting of the accidental 
degeneracy in the Dirac states for hydrogen. As we have seen above, this 
calculation is entirely finite--there are no infinities introduced at any stage, 
and there is therefore no need to introduce any renormalization procedure 
to explain the data. Thus, in contrast with the use of quantum field theory 
to explain this effect, the explanation with the elementary interaction field 
theory is mathematically consistent and the underlying formalism is in 
terms of field equations with bona fide solutions. 

Using the experimental measurement for the Lamb splitting E(2Sx/2) - 
E (2Pm)  (which is the most accurately measured value in the states of 
hydrogenic atoms) given in preceding discussion, we find from the 
theoretical expression for this splitting [equation (2.2.14)] that 

gM = (2.087 • 0.001) • 10 -14 cm (2.2.16) 

This is the extra fundamental constant that appears in the elementary 
interaction field theory. We have seen in the particular application to the 
hydrogen spectrum that it is in the domains whose radii are this order of 
magnitude where the conventional Coulomb interaction between charged 
matter becomes modified. This appears most strikingly in the expression 
for the wave function [equation (2.2.5)] for the unperturbed hydrogenic 
electron. It is seen from this form that when the electron-proton separation 
is of the order ofgM, the modified wave function is significantly different from 
the Dirac solution. However, as distances greater than this are approached, 
let us say r > 10 -13 cm, the solution is essentially equal to the standard 
Dirac solution. 

It is perhaps also significant that (a) the magnitude of gM is close to the 
Compton wavelength of the proton (i.e. relating to the proton mass) and 
(b) that the constant gM~' [appearing in equation (2.2.2)] is the order of 
magnitude of the Compton wavelength of the intermediate boson that 
might be used to describe weak interactions. (The hint in the latter obser- 
vation is that perhaps weak interactions are not more than a manifestation 
of electromagnetic interactions at sufficiently small distances. This is also 
strongly indicated by the fact that the two-component spinor form of the 
electromagnetic equations is not covariant with respect to reflections in 
space or time. Such a formalism is, of course, a natural one with which to 
describe the observed weak interactions because of their lack of reflection 
symmetry.) 

Thus far, we have seen that the two measured Lamb splittings in hydrogen, 
for the states with principal quantum numbers 2 and 3, are predicted by the 
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elementary interaction theory. The Lamb splitting [E(4S1/2)- E(4PI/2)] 
has not yet been measured. Nevertheless, it is interesting to compare the 
theoretical values for this splitting according to the present theory and the 
standard theory (quantum electrodynamics). Using equations (2.2.13c) and 
(2.2.16) in equation (2.2.11), we find that the present theory gives the result 

[E(4S1/2) -- E(4P1/2)]/h = 132.22 MHz 

The result obtained from the conventional quantum electrodynamical 
formalism is (Petermann, 1958; Layzer, 1961) 133-10 • 0.02 MHz. 

The difference between these two theoretical values (~0.7 ~)  is signifi- 
cantly different than the difference in the previously determined states. 
Further, as the states with even higher principal quantum numbers are 
considered, the differences of the predictions of the two formalisms may 
become increasingly greater. Thus, experimental investigations of the Lamb 
splittings in the higher states of hydrogen should be quite significant in 
regard to the test of the predictability of the elementary interaction theory 
as compared with quantum electrodynamics. 

Aside from these differences, however, it is interesting to note that while 
the two theories, being so different with respect to both formalism and 
interpretation, should give results for the Lamb splitting that are so close. 
At the present stage of the theoretical investigation, it can only be con- 
jectured that this is not pure coincidence ! 

2.3. Deuterium and He + 

In view of the general form of the field equations (3.8), Part III, the Lamb 
splittings for hydrogenic atoms in which the nuclei are D and He should be 
determined respectively from sets of 3- and 5-coupled nonlinear equations. 
This, of course, is because of the structures of the respective nuclei. On the 
other hand, to treat these hydrogenic atoms exactly as we treated normal 
hydrogen atom, above, would be equivalent to assuming that the D and He 
nuclei are single particles, with increased mass (for D) and increased mass 
and charge for He. It is not clear at the present stage that this is an accurate 
assumption. Nevertheless, should such an assumption be made, the 
approximation of an infinite nuclear mass (that we made above) would 
imply that the Lamb splitting in D should be the same as in the e-p system. 
The actual experimental ratio of Lamb splittings in the first excited state 
(n + 1) = 2) for D : : H is 1.0012. Thus, the error in neglecting the two-body 
nucleus of D is of the order of 0.1 ~o. 

The error is greater in He + . In this case, the continued assumption of an 
infinite nuclear mass, but a nuclear charge that is doubled, leads to a 
replacement of the fine structure constant ~, in equation (2.2.11) (for the 
Lamb splitting) by the constant Z~, = 2~,. Since the leading term in the 
derived expression for the Lamb splitting depends on ~4 (for hydrogen), it 
follows that the Lamb splitting in He + should be 2 4 = 16 times greater. The 
experimental ratio for the Lamb splittings (in the first excited state) for He + 
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to H is of the order of 14. It is felt by this author that improved predictions 
for the Lamb splittings in He + will follow only after the structure of the 
helium nucleus is taken into account--by considering better approximations 
to the solutions of the 5-coupled equations that describe this atomic system. 

2.4. The Lifetimes of the Excited States of Atoms 
Within the elementary interaction approach, we have argued that 

spontaneous emission does not occur. The lifetime of an atom in any state is 
therefore predicted to be infinitely long--if this atom is the entire system. 
How, then, does the present theory predict the experimental observations 
of the lifetimes of the excited states of hydrogen ? The answer lies in the 
theoretical results of our preceding analysis of electron-positron pairs. 
Recall that it was found that a boundstate solution for the pair corresponds 
to the experimental facts that are conventionally interpreted as 'pair 
annihilation'. But matter is not annihilated here (nor created) at arbitrary 
times. Since matter persists, according to this theory, we were led to the 
conclusion that any arbitrary region of space must be populated with a 
large, but definite number of such pairs in their ground states of null energy- 
momentum. This model was used to predict the correct spectral distribution 
for a radiating black body. 

With this model in which a background matter field of particle-anti- 
particle pairs permeates space, it follows that a box that should contain a 
hydrogen gas, that is sufficiently rarefied to be able to consider one atom at 
a time, must still entail the coupling of each of these atoms to the background 
gas of pairs, as well as its coupling to the walls of the box. Indeed it is just 
the former coupling that leads to the prediction that an atom in an excited 
state will decay, at a particular rate. On the other hand, the walls of the box 
must have a much smaller effect on the lifetimes of excited atoms than would 
be observable in the laboratory. This follows from the observation that the 
measured atomic lifetimes seem to be independent of the sizes or shapes of 
their containers. For example, the lifetimes seem to be the same, whether 
the atoms are radiating within a star or in a glass tube in the laboratory. 
Thus, the decay of excited atoms, in the gaseous state, must follow here 
from the coupling of the individual atomic components of the hydrogen gas 
to the particle-antiparticle matter fields that we have concluded must be 
present in the background. 

The general expression for the coupling of the excited atom to the 
background matter field follows from the coupled field equations (3.8) Part 
III. Two of these equations, in this application to hydrogen, must be taken 
to have the form given in equation (2.1.1), except for the inclusion here of 
contributions to the interaction functional o r which relate to the electro- 
magnetic coupling of the hydrogenic electron and proton to the background 
gas of electron-positron pairs. Similarly, the matter field equations for the 
pairs [equations (1.10.2)] must now also include the bound electron- 
proton system in their interaction funetionals--i.e, the solutions of equation 
(2.1.1) must be included in these functionals. 
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Finally, to take the excited atoms, one at a time, and the pairs in the 
background matter field, as separated entities ,we assume that the coupling 
is sufficiently weak between all of the constituent two-body systems so that 
the interaction funetionals jCk) may be represented in terms of an averaged 
background potential. 

We have seen in the preceding section that each of the background pairs, 
when it is in its ground state of null energy-momentum, does not interact 
electromagnetically, as a unit. Nevertheless, we also found that the separate 
matter field components of the pair do couple electromagneticaily to other 
mutually interacting charged matter. According to the result that was 
obtained, the action of each pair on the atomic electron is that of two 
oppositely polarized currents, directly coupled to the atom. It was further 
shown that in the rest frame of the 'target'---in this case, the excited atom-- 
the effective potential that represents the action of the pair has a form 
[equation (1.7.4)] of a plane polarized potential field, with associated 
frequencies, from 0 to 2A, that run over a continuum of values--because of 
the continuum of relative velocities between a given pair and the atom. 

Taking account of the fact that the effect of J z  is negligible compared 
with that of J1 in this problem, we will ignore the coupling term (2.2.2), 
but take the proton coupling term (2.1.7), in addition to the effect yvAv 
of the pairs, where A, is the vector potential of the pair, at the site of the 
atomic electron. We have seen earlier that this has the form: 

~klAlexp[:ki(~ot--k.r)] 0~<co~<2A 

The polarization orientation (denoted by the unit vector 6k) is in a perpen- 
dicular direction, relative to the (randomly directed) motion k of the 
interaction with the atom. The magnitude of k, of course, is co/c. The 
electron coordinate, r, denotes its position relative to its parent nucleus. 
The average value of r is then much smaller than the wavelength 
2~r/k = 2rrc/~o, since this is a nonrelativistic gas. With k . r  < 1, the factor 
exp(• may be approximated by unity. This is the 'dipole approxi- 
mation'. It corresponds to taking the effective vector potential, at the site of 
the atomic electron, to have the following form 

~k(Al + iA2)=%lAlexp(• ) 0~<co~<2A (2.4.1) 

while the other components of the vector potential are zero. 
Using the nonrelativistic approximation for the coupled matter field 

equations [Part III, equation (3.8)] and treating the effect of the pair 
potential as a small perturbation on the atomic states, the usual expression 
for the transition probability is obtained from time-dependent perturbation 
theory (Sehiff, 1949). Such a reduction of the formalism clearly follows from 
the discussion in Part III which demonstrated how the present nonlinear 
formalism reduces to the ordinary quantum mechanical formalism in the 
limit of sufficiently small energy-momentum transfer between the interacting 
components of the physical closed system. 
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In this limit, the interaction functional J~ oc I/kA~ (in the Dirac form of 
the theory) reduces to --iAk Ok (in the Schr~dinger limit). The vector 
potential Ak for the pair matter field is, in turn, given in equation (2.4. 1) 
Thus, the coupling of the pair matter fields to the hydrogenic electron in the 
gas yields the identical formal expression for the probability of transition 
from one atomic state In) to another In'), when time-dependent perturbation 
theory of ordinary quantum mechanics is utilized. With the electric dipole 
approximation, this expression has the usual form (Bethe & Salpeter, 
1957).I" 

E,,,3 ^ 2 
w , , ,  = ~ lek'd,.,I (2.4.2) 

where 
E,,, = E, - E,, = oJ (2.4.3) 

denotes the energy transfer when a transition occurs. The electric dipole 
matrix element is 

d,,, = e ~ (n ' l - iVj ln)  (2.4.4) 
J 

and In), In') are the limiting Schrrdinger states for the electrons of thej th  
constituent atomic component of the hydrogen gas. The sum in equation 
(2.4.4) refers to the effect of one electron-positron pair on the entire hydrogen 
gas that is radiating within the container. 

Since the only index that distinguishes the different pairs in the back- 
ground matter field from each other are the randomly oriented polarization 
vectors ~k, the totat effect of all pairs in the container on the radiating gas 
can now be taken into account by integrating equation (2.4.2) with respect 
to all angular variables. After doing this, it is found that the total transition 
probability that connects the excited state In) to all other states In') has the 
following form: 

T~ -1 = ~o) ~ [d,,,[ z see -1 (2.4.5) 
r l  p 

T, is the 'lifetime' of the excited state In). The expression (2.4.5) is, of 
course, identical with the formula for the lifetime of an excited state as 
derived from quantum electrodynamics, when the electric dipole approxi- 
mation is used there. 

As we have seen, then, the theoretical expression (2.4.5) for the lifetime 
of an excited atomic state is not necessarily a consequence of the assumptions 
of quantum electrodynamics. The same expression for the lifetime is also 
derivable from ordinary time-dependent perturbation theory, applied to 
the interaction operator--iAk O k in the nonrelativistic Schr~3dinger formalism. 
The successful predictions of the lifetimes of excited atomic states is then 
not an absolute test of quantum electrodynamics, nor of ordinary quantum 
mechanics, nor the present deterministic field theory. The reason, of course, 
is that the energy-momentum transfer in this type of experiment is sufficiently 

1" For  a complete discussion of such applications to atomic transitions, see Bethe & 
Salpeter ibid., Sec. 59-63. 
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low that all three formalisms can be approximated by the same theoretical 
formulas for the atomic lifetimes. 

The salient point in regard to the predictions of the elementary interaction 
field theory is that the hydrogen gas 'radiates' only by virtue of the transfer 
of energy and momentum from the excited hydrogen atoms of the gas to the 
background gas of particle-antiparticle pairs. The reason that the predicted 
lifetimes are the same in this theory and in the quantum approach is that the 
vector potential which represents the electromagnetic field of thepair (when 
it is in the particular state of motion discussed in the preceding section) 
which acts on the hydrogen atoms, is formally identical with the potential 
field that would describe a background radiation field of free 'photons' 
(which is postulated by quantum field theory). 

In view of the constancy of the measured lifetimes of atomic states, it is 
concluded that the density of pairs that form the background 'absorber' is 
necessarily sufficiently high throughout the portions of the universe that 
have been probed thus far, that no appreciable effect on the measured 
lifetimes, due to fluctuations in this density, could have been observed. 
Nevertheless, the present analysis suggests that if measurements of spectral 
line shapes (which, in turn, depend on the lifetimes of the excited states) 
could be carried out with sufficiently high resolution, under more varied 
conditions of rarefaction and condensation, differences in the lifetimes 
should occur. 

Summing up this section, the correct quantitative predictions for the 
energy spectrum of hydrogen, including the Lamb splitting, as well as the 
lifetimes of the excited states of hydrogen, follow from an approximation to 
the deterministic, nonlinear field formalism of the elementary interaction 
field theory. In contrast with the approach of quantum field theory, (1) the 
electron-proton system alone leads to the correct prediction of the Lamb 
splitting and (2) the background matter fields for an ideal gas of electron- 
positron pairs--whose dynamical and kinematic features were derived 
from an exact solution of the coupled equations for the pair--plays the 
role of an 'absorber' to describe the decay of excited matter that is con- 
ventionally referred to as 'spontaneous decay'. It is also important to 
emphasize here that the results of the present theory follow from a finite 
description in which perturbative methods are not intrinsic in the 
formalism they are rather used only as a convenient method to approxi- 
mate the solutions of the underlying coupled field equations for a closed 
system. 

Appendix 
Computation of  the Lamb Splitting 

The Lamb splitting was determined in the text [equation (2.2.11)] to be 
proportional in first order to the number, 1I+ +/_1, where 

cO 

( F+ (7+_ 
/+ = (~y)-I  J p2 exp(--ZK/p)dp (A.1) 

0 
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~2 = A2 _ E 2, K = 167rgMy~7 and F_+, G_+ are the respective (unperturbed) 
'large' and 'small' components of the radial Dirac solutions for hydrogen; 
the plus and minus signs refer respectively to the states with K = +1 and 
K = - I .  

The general expressions for the integrals I+ will be derived below in 
terms of a (finite) power series expansion in the fine structure constant y. 
While only the first parts of these expansions will be utilized at present, 
because of the limits of accuracy in the experimental Lamb splittings to be 
compared with the theory, the derived expansions may be evaluated to any 
desired accuracy. These expansions in ~ are demonstrably convergent since 
they represent an analytic function in closed form, integrated over all 
space. The latter is the conserved energy .[ 000 d3x that follows from the 
Lagrangian formalism as a consequence of its invariance with respect to 
time translations [equation (1.1.1) with the exact hydrogenic solutions of 
equations (2.1.1) inserted]. It should be noted that not only the integrals 
themselves, but the integrands are finite everywhere. This is because the 
factor exp(-2K/p) approaches zero faster than any polynomial in l ip 
approaches infinity at the origin. 

Consider the Lamb splitting in the hydrogenic state with n = 1. This 
corresponds, in the conventional spectroscopic notation, to the 2S~/z - 2PI/z 
energy separation. In this case, the radial wave functions have the following 
form in terms of a power series expansion in p: 

= p' ~ p" e- '  (1.2) 
v = 0  

Since K 2 = l ,  
s = [1 - yl]l/2 = 1 - �89 + 0(y4) (A.3) 

With the approximation p~ _ p it follows that 

I+ = (~W)-l[aoboLo + (aob~ + al bo) Ll  + a~ b~ L2] (A.4) 

where 

Lm = (tc)(m+ l)/2 Jm (A.5) 

and 
co 

arm = f u s exp [-2V'(K) (u + l/u)] du (1.6) 
o 

These integrals will be evaluated in the last section of this appendix. 
The wave functions (A.2) are determined by the normalization condition 

and the recursion relations (Schiff, 1949, p. 324) for the coefficients a~, by. 
The normalization condition 

co 

~1-1 f (F 2 + G2)exp(-2~c/p)dp = 1 
o 
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gives, for n = 1, 

�9 / = [(ao z + bo2)L2 + 2(ao al + bobx)L3 + (al 2 + blE)L4] 

and the recursion relations give 

al/bl = -~/~71, 

2s+  1 
bo/bl = -  2 

ao/bo = (s + K) / y  

V~ + (s - K)r  h 
Y~7 + ( s - K +  1)~/i 

To order ~2, equation (A.8) reduces to 

ao/bo =21~ I -~,/2j 

To the same accuracy, 

aJbl  = -~,/4 

[-(1 - 3~,2/8) 

193 

(A.7) 

(A.8) 

(A.9) 

(A.12) 

Inserting equations (A.12) and (A.11) into (A.4), we finally obtain the 
following result: 

I+ = 1 /6  + 0(7 z) /_ = - 1 / 2  + 0(72) 

Thus, for the quantum number n = 1, 

II+ + I_1, = 1/3 + 0(y z) (A.13) 
13 

leading order in ~, is obtained: 

K = _ I  l a ~  = ~'J~ro 

~ 2 

2 2 
bo = 7 ;32-ro 

where r0 = hZ/me 2 is the 'first Bohr radius'. 
We will see below that to this same order of approximation the integrals 

L,, have the following values (up to m = 8): 

L0 ~ 1/2 LI ~ Lz -~ 1/4 L3 ~ 3/8 L4 =~ 3/4 
(A.11) 

Ls ~ 15/8 L6 ~ 45/8 L7 ~ 315/16 L 8 =~ 315/4 

With equations (A.11), (A.10), (A.9) and (A.7), the following result, to 

7/= 1/2r0 (A.10) 



194 MENDEL SACHS 

In a similar way, the n = 2 solution is characterized by the radial wave 
function 

2 

so that, for this case, 

I• = (7~/) -1 [a0 boLo + (ao ba + al b0)L1 + (ao b2 + aa bo + aa bOLa 

+ (ai bz + a2bl)L3 + aab2L4] (A.14) 

The normalization condition gives: 

r /=  {(ao z + bo2)Lz + 2(ao al + bobl)L3 + [2(aoa2 + bob2) + (ai z + bi2)]L4 

+ 2(al a2 + bl b2)L5 + (az 2 + b22)L6} (A.I 5) 

For this state, ~/_ 1/3ro. Using this approximation together with the 
recursion relations, the following coefficients are obtained for the corre- 
sponding wave function, to leading order in y: 

ao 9 1 :-,& 
10y / 1 4 / 1 , 

K : - I  a 1 : 9 - ~ / ~ o o  bl = - -  / 7 - -  ~/Jr0 

t - 2 y  / 1 4 1 / 
= < = 5,/g 

-2y/.2_2 y z / 2  
ao= 3 43ro bo-3-43roro 

2 r l 2  i4 2 
K =  1 al 3 ~/3r0 bl =-3-~/3~r~ 

- y  2 2 2 
Ira 2 ~d3~r ~ b2 = ~-d~7~ro (a.16) 

Inserting equation (A. 16) into equation (A. 14), we find that for n = 2, 

[/+ + LIz = I-~ - �89 = }  + 0(r 2) (A.17) 

The radial wave function for the n = 3 state is expressed as the following 
s u m  

(GF:)~-P 3.~=o(b:)P~e-P 
and in this case, 

I+ = (y~)-l[aoboLo + (aobl + al bo)L1 + (aob2 + a2 bo + al bl)L2 
+ (aob3 + a3 bo + al b2 + a2b,)L3 + (ai b 3 + a3 bl + a2b2)L4 

+ (a2 b3 q- a3 b2) L5 + a3 b3 L6] (A. 18) 
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The normalization condition for this solution gives the relation: 

�9 / = {(ao 2 + bo2)L2 + 2(ao al + bo bi)L3 + [2(ao a2 + bo b2) 

q- (al 2 + b12)]L4 --}- 2(al a 2 + b 1 b 2 + a 0 a 3 + b 0 b3)L5 

+ [2(al a3 + bl b3) + (a22 + b22)]L6 + 2(a~ a3 + b2b3)L 7 

+ (a32 q- b32)L8} (A.19) 

In this state, ~/~ 1/4r0 so that with the recursion relations, the following 
coefficients are obtained for the radial wave function, to leading order in 2': 

K = I  

K ~ _ m l  

"ao/b3 - 152' bo/b3 = 152'2/16 
8 

-252" bJb3 = 5 a , /b3 -  8 

a2/b 3 = ~ b2/b 3 = - 5  

a3/b3 - - 2 '  b3 = 1/15r0 
8 

ao/b3 = 3-Z bo/b3 = -3  
2 

-21y  bl/b3 =9  aJb3 8 

az/b3 - 92" bz/b3 = - 6  
8 

a3/b3 - - 2 '  b3 = 1/(3r0) 
�9 8 

Inserting equation (A.20) into (A. 18), we find that 

I/++/-13 ~ l ~ - � 8 8  = ~  + 0(r 2) 

(A.20) 

(A.21) 

Evaluation of  the Integrals Jm 

The terms L,, that appear in the terms of the preceding equations depend 
on the integrals J,. [equation (A.6)] according to the proportionality shown 
in equation (A.5). Let us now proceed to compute the terms J,,. 

It is readily verified that 

S-i ~-- ~ exp [-2~./(/r (u --~ l/u)] du = 2Ko(4a/x) (A.22) 
.I U 
0 

where Ko is the zeroth order modified Bessel function of the second kind 
(Watson, 1945). Taking derivatives of J - i  with respect to 2~/x will then 

13" 
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generate the other  integrals Jm in terms of  these derivatives. I f  we denote the 
nth derivative of  Ko with respect to its a rgument  by KCo "), the following 
relationships are obtained:  

Io  = - 2 K o  "~ 

J1 = 4Ko c2) - 2Ko 

J2 = - 8 K o  c3) + 6Ko cl) 

J3 = 16Ko c4) - 16Ko ~2) + 2/(0 

J4 = -32Ko c5) + 40Ko c3) - 10Ko " )  (A.23) 

J5 = 2(32Ko c6) - 48Ko ca) + 18Ko c2) - Ko) 

J6 = 2(-64Ko c7) + l12Ko c5) - 56Ko c3) + 7Ko "))  

3"7 = 2(128Ko c8) - 256Ko c6) + 160go ~4) - 32Ko c2) + Ko) 

J8 = -16(32Ko c9) - 72Ko c7' + 54Ko c5) - 15Ko c3) + Ko "~) 

The  exact forms  for  the derivatives in the preceding equat ion are as follows: 

KCol)(z) = -Kl(z)  

KCo2~(z) = Ko(z) + K # ) / z  

KCo3)(z) = -{(1 + 2/z 2) Kl(z) + Ko(z)/z} 

Ko"~(z) = (3/z 2 + 1) (Ko(z) + 2K~(z)/z) 

K(oS)(z) = -{2(1 + 6/z 2) Ko(z)/z + (24/z 4 + 7/z 2 + 1)Kl(z)} (A.24) 

"KoC6)(z) = (1 + 9/z 2 + 60/z 4) Ko(z) + 3(1 + l l /z  2 + 40/z 4) K,(z)/z 

Ko(7)(z) = -{3(1 + 120/z 2 + 17/z4)Ko(z)/z + (1 + 15/z 2 + 192/z 4 
+ 72O/z 6) K,(z)} 

KCoS)(z) = (1 + 18/z 2 + 1272/z 4 + 975/z6)Ko(z) + (4 + 405/z 2 + 1011/z 4 
+ 5040/z 6) Kl(Z)/Z 

In  the p rob lem to which these functions are applied in the text, the a rgument  
of  the Bessel functions z = 4x < 10 -5. Thus,  to approx imate  the integrals arm 
to  one par t  in 105 we will only keep terms to the highest power  in 1/z. 
According to the power  series expansions for  the zeroth and first-order 
Bessel functions, Ko and KI, the leading terms are (Watson,  1945) 

Ko(z) = - I n  (z/2 + E) + 0(1/z 2) (E = Euler 's  constant)  
(A.25) 

Kl(z) = 1/z + 0(1/z 2) 

With  equat ion (A.21) (keeping terms to the highest power  in I/z) and 
equat ion (A.25) in equat ion (A.24), we obta in  the approximat ions  for  the 
te rms L,, tha t  are given in equat ion (A.11). 
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